6. Tsunami Simulations ************************************* All project authors contributed to this assignment in equal parts. 6.1 - 2010 M 8.8 Chile Event ===================================== 6.1.1 - Visualization of input ------------------------------------------- .. image:: ../../_static/assets/task_6-1-1_chile_dis.png scaling interval[-2,2]. .. image:: ../../_static/assets/task_6-1-1_chile_bath.png scaling interval[-10000,10000]. 6.1.2 - Simulations ------------------------------------------- `Chile 1000` .. raw:: html grid size: 1000 `Chile 5000` .. raw:: html grid size: 5000 6.2 - 2011 M 9.1 Tohoku Event ===================================== 6.2.1 - Visualization of input ------------------------------------------- .. image:: ../../_static/assets/task_6-2-1_tohoku_dis.png scaling interval[-2,2]. .. image:: ../../_static/assets/task_6-2-1_tohoku_bath.png scaling interval[-10000,10000]. **Simulations** `Tohoku 1000` .. raw:: html grid size: 1000 Leaves the top domain at 2900 seconds. Computational demand: per timestep we update 4050000 cells. `Tohoku 5000` .. raw:: html grid size: 5000 6.2.2 - Soma -------------- We have put the station at x=120000 and y=50000. The initial water height is -0.7 meters. It steadily decreases and reaches its minimum at 2620 seconds at -2.1 meters. The water level starts rising and at 3320 surpasses 0 meters and thus the wave reaches Soma. The wave reaches Soma after 55 minutes. It then steadily rises and reacehs its maximum at 3870 seconds with 4.45 meters. `Computation` Given is: .. math:: \lambda \approx \sqrt{gh} We used 15 meters as our water height from the epicenter to compute the speed. :math:`\lambda = \sqrt{9.81*15} = 12.33 m/s` Multiply by 3.6 to get km/h: 44.39km/h. Using the Pythogaros we get a distance to the station 130 kilometers. Dividing it by the speed we get a time of 2.92 hours.