6. Tsunami Simulations
*************************************
All project authors contributed to this assignment in equal parts.
6.1 - 2010 M 8.8 Chile Event
=====================================
6.1.1 - Visualization of input
-------------------------------------------
.. image:: ../../_static/assets/task_6-1-1_chile_dis.png
scaling interval[-2,2].
.. image:: ../../_static/assets/task_6-1-1_chile_bath.png
scaling interval[-10000,10000].
6.1.2 - Simulations
-------------------------------------------
`Chile 1000`
.. raw:: html
grid size: 1000
`Chile 5000`
.. raw:: html
grid size: 5000
6.2 - 2011 M 9.1 Tohoku Event
=====================================
6.2.1 - Visualization of input
-------------------------------------------
.. image:: ../../_static/assets/task_6-2-1_tohoku_dis.png
scaling interval[-2,2].
.. image:: ../../_static/assets/task_6-2-1_tohoku_bath.png
scaling interval[-10000,10000].
**Simulations**
`Tohoku 1000`
.. raw:: html
grid size: 1000
Leaves the top domain at 2900 seconds.
Computational demand: per timestep we update 4050000 cells.
`Tohoku 5000`
.. raw:: html
grid size: 5000
6.2.2 - Soma
--------------
We have put the station at x=120000 and y=50000.
The initial water height is -0.7 meters.
It steadily decreases and reaches its minimum at 2620 seconds at -2.1 meters.
The water level starts rising and at 3320 surpasses 0 meters and thus the wave reaches Soma.
The wave reaches Soma after 55 minutes.
It then steadily rises and reacehs its maximum at 3870 seconds with 4.45 meters.
`Computation`
Given is:
.. math:: \lambda \approx \sqrt{gh}
We used 15 meters as our water height from the epicenter to compute the speed.
:math:`\lambda = \sqrt{9.81*15} = 12.33 m/s`
Multiply by 3.6 to get km/h: 44.39km/h.
Using the Pythogaros we get a distance to the station 130 kilometers.
Dividing it by the speed we get a time of 2.92 hours.